
Note, in conclusion, that the geometric method of constructing the FE basis, distin- 
guished by simplicity and universality, is especially effective in modeling elements of 
higher orders of approximation. 

NOTATION 

T, temperature; Ti, nodal temperature values; %i, basis functions of the finite element; 
p, e, ~, cylindrical coordinates. 
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SOLVING NONSTEADY HEAT-CONDUCTION PROBLEMS FOR 

MULTILAYER SYSTEMS BY THE FINITE-DIFFERENCE METHOD 

E. M. Glazunov and G. N. Pikina UDC 518.61:536.248 

The problem of heat propagation in a multilayer system with intrinsic heat libera- 
tion of any subsystem depending on the temperature, coordinates, and time is con- 
sidered. 

The construction of concrete housings of underground structures in various climatic 
conditions requires optimization of the temperature conditions of concreting. In practice, 
temperature regulation is accomplished either by producing definite conditions of concrete 
heating in the jacket (thermal-heating method) or by heating the housing by means of insula- 
tional materials in contact with air (thermos method). Theoretical analysis of the choice 
of parameters of the optimal conditions reduces to solving the problem of nonsteady heat 
conduction in a multilayer system. 

Suppose that, within the limits of each subsystem, the thermophysical characteristics 
are constants and the heat liberation of any subsystem may be represented by a specified 
function of the temperature, time, and coordinates Q = Q(U, r, t). Then heat propagation 
in the system may be described by the following nonlinear equation of nonsteady heat conduc- 
tion for the one-dimensional case in cylindrical coordinates 

r OQ =~ r -  ar r . < r  (1 )  
c~ cgt 8l dr ' rL ~ re 

with initial condition 

U(r, 0)= ~(r), r n ~ r ~ r r e  

and boundary conditions of the first kind 

(2) 
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U(r L t)=?~ U(rre, t)-='l, t(l), O<~t-~T 
for the first boundary problem or of the second and third kind 

(--ar L) Ou(r L, t)iOr+15 ~ L O-Y~ O < t < Y ,  

(arte)~U 'trre, l)/Or + ~(l)U (rre, t )=yt(t) ,  O< I < T 

(3) 

(4) 

for the second and third boundary problems. 

In cases that are of practical importance, approximate methods of solving Eq. (i) are 
used -- in particular, the finite-difference method [i]. The best-known method of obtaining 
calculational difference formulas for the temperature fields is the method based on physical 
concepts regarding the thermal balance of elementary volumes. In solving Eq. (i) by a 
finite-difference method, the calculational points may be within the limits of a single sys- 
tem (boundary conditions of the first and second kind) or may lie on the boundary with air 
(boundary conditions of the third kind) or may be on the boundary of two inhomogeneous media 
(boundary conditions of the fourth kind). Within the framework of the thermal-balance model 
for boundary conditions of the first, second, and third kind in cylindrical coordinates, cal- 
culational formulas written with an accuracy up to terms in (Ar) 2 are known. With boundary 
conditions of the fourth kind, no such formulas are known. 

It is expedient to obtain calculational formulas using the Marchuk integral identities 
[2, 3]. With their use, in the present work, it is relatively simple to find theoretical 
formulas for boundary conditions of the first, second, and third kinds coinciding with the 
analogous formulas obtained on the basis of the thermal balance, and a formula for the boun- 
dary condition of the fourth kind is derived for the first time for media with intrinsic 
heat liberation depending on the temperature in the case of a cylindrical thermal front. 
First, for a single medium, the linear heat-transfer equation of the type in Eq. (i) is con- 
sidered, where the heat liberation Q is a function of the time and coordinates, and the 
results are generalized to the case in which the heat liberation also depends on the temper- 
ature. 

The region of variation of r and t is covered by a grid formed by the points rk, tl: 
r k = kAr, t I = IAt (k = O, i ..... n; I = 0, 1 ..... m; Ar = h/n; At = T/m), where h is the 
spatial dimension of the region and T is the characteristic time. Then the system of differ- 
ence equations for internal points of the region is derived using the first Marchuk integral 
identity 

I 
t l t l t l rh+ -~_ 

U(rh+l' l ) - U ( r h ' t )  d r -  I U(rh' t ) - U ( r h - l '  t) I' ~ ( s OU(s, t) s OQ(s, t) ) %+i ~ dr= dt d~, 
. a Ot ac~ Ot 

tz_ , f drr t l-I .[ drr t l - I  rk----21 

r h rk__ f 

where U(rk+t), U(rk), U(rk_1) are the temperature values at adjacent calculation points at 
time t. Integration in Eq. (5) gives 

rl~ r~ (6) 
aAt Ar + U(rk~, l, t l - l )  aAt ~_ Q(r~, tz)--Q(o~,  h - O  

rhln(l-- Ar)& - -  U (r~_l, t~_~) - -  

r~ln 14- Ar 
r h 

The second Marchuk identity is written for the derivative of the temperature with 
respect to the coordinate 3U(r, t)/3r. At the left-hand boundary of the region of defini- 
tion with respect to r 

t l  l l 

�9 % Or dt = , rLFA r 

tl--1 f l--I  f ~ d r  

r L 

[U (% -F At, t) - -  U (r L t)] 
(7) 
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t 1 r L ' -Ar r 

�9 +a~ , r . \ a Ot ac,, Ot L dr r L 
l l - -  1 r L 

F 
r l .  

The integral identity for 3U/3r at the right-hand edge of the region of definition with 
respect to r is written analogously. 

Using Eq. (7), a difference equation is derived for the boundary condition of the third 
kind corresponding to the boundary condition in Eq. (4) when B~ # 0 and B1(t) # 0. The 
boundary condition at boundary r L at time t is rewritten, taking Bo(t) = rLa/cv, xo(t) = 

rLat*/c v 

~(U(r L t) --t*) = acvOU(r L O/Or = ~OU(r L O/Or, (8) 

where  t* i s  t he  t e m p e r a t u r e  of  t he  s u r r o u n d i n g  a i r .  I n t e g r a t i n g  Eq. (8) over  t ime on the  
segment  [ t l _ t  , t l ]  , t a k i n g  a c c o u n t  of  the  Narchuk i d e n t i t y  in  Eq. (7 ) ,  a f i n i t e - d i f f e r e n c e  
e q u a t i o n  o f  m e d i u m - - a i r  or  m e d i u m - - l i q u i d  h e a t  t r a n s f e r  i s  o b t a i n e d  

U (r L lz) = U (r L, it-l) [ 1 -- 
2oAt 2aaAt J 2a~zAt 

2oAt Q (r L h) -- Q (rL tl-l) 

+ 

U(rL@Ar' tt-l) ( Ar  I ( Ar ) -J- c~ (9) 
In ! -}- rL Ar 1 q- 

r L ,  .. 

Since the calculation formulas for the temperature have the explicit form of difference equa- 
tions, the following constraints must be imposed on Ar and At for convergence of the approxi- 
mate formulas [i] 

At ~ (Ar)~/2a (10) 

for the first and second boundary problems and 

At < (Ar)~ r L (11) 
2a(1 + ~A___f_r ) (r~.+ h) 

f o r  t he  t h i r d  [3 ] .  

Using Eq. (7), difference formulas are obtained for the contact of two inhomogeneous 
media (boundary condition of the fourth kind). Without loss in generality, it is assumed 
that to the left of the boundary there is a nonthermoactive medium with the thermophysical 
characteristics at, %1, al and to the right there is a thermoactive medium with the thermo- 
physical characteristics a2, %2, a2. With ideal contact, the usual matching conditions must 
be satisfied 

U(r b h)lrb_ o : U(r b, h)l%,o, (12) 

L1 ( OV (rbor lt) )It b-O = L~ (.OU (r b0r "tz) )[rb, o.~- 

The condition of equal heat-flux densities to the left and right of contact must be satis- 
fied at any moment of time. Hence, the corresponding time integrals over the interval At 
must also be equal 

tl t Z 

)~l ~ OU (rb t) r -o dt -= ~ ,f OU (rb l) (12a) 

t l__ 1 b tl__ 1 

Estimating the derivatives in Eq. (12a) using Eq. (7), a difference expression is obtained 
for the temperature at the contact of two inhomogeneous media, taking account of the intrin- 
sic heat liberation 
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U(r.  h ) = U ( r b ,  l l - l ) [ 1 - -  1 ( A__~_I + A__~_)] At 
(UlCl "3[- "U2C9) @ U (r b -  Art, /t-l) (viol + v2c.2) R1 

At c2v2 Q (rb, h) --- O (rb, h-,) 
x + 

(v~q + v.~c~) R~ (c~v~ + c~v,3 c., 

The fol lowing no ta t ion  i s  in t roduced in Eq. (13): 

+ U ( r  b + A r  2, tl--l) X 

(13) 

30 
! ! , 

20 :. x/ 

/0 

0 

la % 

!!I 

~# ,/2 ,/8 r 

Fig. i. Dependence of the tem- 
perature U (~ in a multilayer 
system (heat insulation--con- 
crete--heat insulation--rock) 
on the distance r, m: a, b, c, 
boundaries; i, i') temperatures 
at a time i0 h after laying con- 
crete at ATI = 0.08 h and AT2 = 
0.02 h, respectively; 2, 2') the 
same, but after 50 h. 

ln(1 A r l )  
k~ r Ar~rb ( Arl ) 

. . . .  c1, -- = RI, 1 -- vl, al Z1 2 6rb 

~ I n ( l +  Ar_.. ) 
rb Ar,arb ( Ar~ ] 

= c~, ' = R~, 1 + = v2. 
a2 2 2 -2 6r b / 

To find the stability conditions for a multilayer system, equations of the type in Eqs. 
(i0) and (ii) must be written for each subsystem. The spatial intervals Arl, Ar2, ..., Ar n 
may be chosen in the form of the corresponding intervals from the given inequalities, and 
the unit time interval may be taken to be the minimal value of Atl, At2, ..., Atn. In this 
case, the difference formulas will also be stable for a boundary condition of the fourth kind 
[i, 3]. 

The solutions obtained are now generalizedto the nonlinear case, when the heat libera- 
tion Q depends on the temperature -- Q = Q(U, r, t) -- by the method of successive approxima- 
tion. Suppose that at time t Z the solution of the nonlinear equation U(r, t) is known. To 
obtain the solution at time t I + At, the known solution U(r, t) is substituted into the 
expression for 3Q(U, r, t)/3t, turning the derivative 3Q/3t into a function of the coordinate 
and time 3Q(U, r, t)/3t = ~Q(r, t)/3t. Then, using the Marchuk identity, it is found that 

Ut+l (rh, tz + At) = Ul(rh_l, tt) K-~ + Ul(rk, tz) Ko + Uz(rh+i, h) K+l + AU (rk, h + At), (14) 

where 

AU(r~, h + At) = Qz+L (U~. r~,, h+~ + At)le~ - -  Qz (U~_~, r~. h)lco; A U  ~ U. (15) 

The coefficients K_~, Ko, K+~ coincide with the corresponding coefficients at temperatures 
U(rk_1 , tl) , U(rk, tZ), U(rk+1, tZ) in Eqs. (6), (9), and (13). In accordance with the 
requirements of the method of successive approximation, the condition of smallness of the 
correction in comparison with the total solution must be tested at each time step. In order 
to confirm the convergence of the solutions obtained in the nonlinear case, it is necessary 
to take the sequence of time intervals At~ < At2 < ... < Atn and compare the solutions at 
the corresponding time. If they coincide with specified accuracy, it may be supposed that 
the solution is convergent in the nonlinear equation. 

The formulas obtained are used to calculate the temperature fields in the concrete hous- 
ing of tunnels constructed in excavated rock by the thermos method. A thermal-insulation 
layer is in contact with the rock, the concrete is placed in a mold including a thermal- 
insulation coating. The whole system is represented in the form of a four-layer cylinder, 
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each layer of which has constant thermophysical characteristics and dimensions. Thermal con- 
tact between the layers is assumed to be ideal, the air temperature in the tunnel is con- 
stant. Heat liberation of the concrete housing is taken into account by the formula of [4], 
which takes the following finite-difference form: 

m 

8 +  O, laU(rh, t~) ' (16) 
/ = 0  

where Qmax, A2o are  r e a c t i o n  c o n s t a n t s  of  the  h e a t  l i b e r a t i o n  of  c o n c r e t e  c h a r a c t e r i z i n g  the 
maximum p o s s i b l e  hea t  l i b e r a t i o n  (J/m 3) and r e a c t i o n  r a t e  (h -1)  de te rmined  e x p e r i m e n t a l l y ,  
r e s p e c t i v e l y .  C a l c u l a t i o n s  of  the  t empe ra tu r e  d i s t r i b u t i o n  in  the  system have been performed 
on a computer us ing  Eqs. (6) ,  (9) ,  and (13) f o r  v a r i o u s  s e t s  of  geomet r i c  and t he rmophys i ca l  
characteristics of the layers, and also with different values of the time step At. 

As an example, the results of numerical calculation of the temperature distribution in 
a four-layer system at Atl = 0.08 h and At2 = 0.02 h are shown in Fig. i. The geometric and 
thermophysical characteristics are as follows: layer thickness ha = 0.04 m, h2 = 0.9 m, h3 = 
0.i m, h4 = 4 m, the thermal diffusivity, thermal conductivity, and heat-transfer coefficient, 
in accordance with [5], are" al = 0.00046 m2/h, %1 = 0.174 W/m-deg, (~1 ~" 7.5 W/m2-deg, a2 = 
0.0027 m2/h, %2 = 1.45 W/m-deg, ~2 = 7.5 W/m2.deg, a3 = 0.0027 m2/h, %3 = 1.45 W/m-deg, ~3 = 
15 W/m=.deg; a4 = 0.0042 m2/h, %4 = 3 W/m.deg. The values in [6] are used for the reaction 
constants of heat liberation: Qmax = 132 kJ/m 3, A2o = 0.0138 hr -~. 

It is evident from Fig. 1 that, even with very different values of the variables At~ and 
At2, the curves of the calculational temperatures practically coincide. This indicates stabi- 
lity of the approximate solutions of the heat-conduction Eq. (I) in multilayer media with 
possible intrinsic heat liberation depending on the temperature. 

NOTATION 

Cv, s p e c i f i c  h e a t ,  kJ /m3.deg;  a ,  thermal  d i f f u s i v i t y ,  m2/h; ~, h e a t - t r a n s f e r  c o e f f i c i e n t  
of medium, W/m2.deg; ~, thermal conductivity, W/m.deg~ U, temperature, K; r, coordinate, m; 
t, t ime ,  h; Ar, s p a t i a l  i n t e r v a l ,  m; At, t ime i n t e r v a l ,  h; h,  geomet r i c  d imension of  sys tem,  
m .  
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